Do forests in Central PA have more available nitrogen on shale than on sandstone?
Jennifer Christhilf, Warren Reed, Lillian Hill, David Eissenstat

Introduction

As a major component of chlorophyll and amino acids, nitrogen (N) is a vital plant nutrient that is commonly limiting in temperate forests. In soil solution, mineral N nitrogen is found as NH₄ and NO₃, with nitrate being the form readily available to plants. We examined the effect of lithology on N status of forests and forest soils in the Ridge and Valley Province of Central Pennsylvania. We hypothesize that trees growing on sandstone-based soils will have less available N than those growing on shale-based soils.

Study Sites

Figure 1. Map of ten sites chosen for study. The Ridge and Valley Province of PA is shown.

Methods

- Soil NO₃ and NH₄
 Sample collection with soil cores to depth of 40 cm
 KCl extraction
 Microplate reading
- Canopy leaf %N
 One red maple (Acer rubrum) and one red oak (Quercus rubra) chosen from each site
 Collection of canopy leaves by shooting
 Preparation by drying and grinding
 CHNS Analyzer for total N
- Analysis - T-test

Results

Nitrate in Soil

![Nitrate in Soil Graph](image)

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shale</td>
<td>1.0</td>
</tr>
<tr>
<td>Sandstone</td>
<td>0.5</td>
</tr>
</tbody>
</table>

$p < .001$
$df = 49$
$t\text{-val} = 5.710$

Ammonium in Soil

![Ammonium in Soil Graph](image)

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shale</td>
<td>0.2</td>
</tr>
<tr>
<td>Sandstone</td>
<td>0.6</td>
</tr>
</tbody>
</table>

$p < .01$
$df = 54$
$t\text{-val} = 2.958$

Nitrogen in Canopy Leaves

![Nitrogen in Canopy Leaves Graph](image)

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shale Maple</td>
<td>1.5</td>
</tr>
<tr>
<td>Sandstone Maple</td>
<td>1.0</td>
</tr>
<tr>
<td>Shale Oak</td>
<td>2.0</td>
</tr>
<tr>
<td>Sandstone Oak</td>
<td>2.5</td>
</tr>
</tbody>
</table>

$p = 0.867$
$df = 18$
$t\text{-val} = 0.170$

Conclusions

- There is a significant difference in NO₃ between shale and sandstone soils, with more nitrate found in shale.
- There is a significant difference in NH₄ between shale and sandstone soils, with more ammonium found in sandstone.
- There is no significant difference in %N in leaves between trees growing on shale or sandstone soils.
- There is more available nitrogen in shale-derived soils than in sandstone-derived soils.
- Shale and sandstone-based soils seem to have similar impacts on tree nitrogen uptake.

Acknowledgements

Special thanks to J. Kaye Lab, the Shale Hills Critical Zone Observatory, and Penn State University’s Department of Ecosystem Science and Management for their support.